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We report inelastic neutron-scattering measurements of the spin dynamics in the layered hexagonal magnet
2H-AgNiO2, which has stacked triangular layers of antiferromagnetically coupled Ni2+ spins �S=1� ordered in
a collinear alternating stripe pattern. We observe a broad band of magnetic excitations above a small gap of 1.8
meV and extending up to 7.5 meV, indicating strongly dispersive excitations. The measured dispersions of the
boundaries of the powder-averaged spectrum can be quantitatively explained by a linear spin-wave dispersion
for triangular layers with antiferromagnetic nearest- and weak next-nearest-neighbor couplings, a strong easy-
axis anisotropy, and additional weak interlayer couplings. The resulting dispersion relation has global minima
not at magnetic Bragg wave vectors but at symmetry-related soft points and we attribute this anomalous feature
to the strong competition between the easy-axis anisotropy and the frustrated antiferromagnetic couplings. We
have also calculated the quantum corrections to the dispersion relation to order 1 /S in spin-wave theory by
extending the work of Chubukov and Jolicoeur �Phys. Rev. B 46, 11137 �1992�� and find that the presence of
easy-axis anisotropy significantly reduces the quantum renormalizations predicted for the isotropic model.
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I. INTRODUCTION

Quantum antiferromagnets on triangular lattices provide
model systems for investigating the effects of quantum fluc-
tuations and geometric frustration. Zero-point fluctuations
are expected to be strongly enhanced for low spin and frus-
trated lattice geometry and may stabilize nonclassical or-
dered or spin liquid phases, or unconventional spin dynam-
ics. The triangular Heisenberg antiferromagnet with first- and
second-neighbor couplings J1 and J2 �see Fig. 1� shows
strong frustration effects and a macroscopically degenerate
classical ground state for 1 /8�J2 /J1�1. This was initially
proposed theoretically as a candidate for a chiral spin liquid
state.1 However, perturbative expansions using a spin-wave
basis2–4 predicted that in this range of couplings quantum
fluctuations do not stabilize a spin liquid state but instead lift
the classical degeneracy to select a collinear stripe order pat-
tern �see Fig. 1�. Moreover, large quantum renormalizations
of the spin-wave dispersion relations compared to classical
have been predicted, but not probed experimentally in the
absence of a good experimental model system. The recent
observation of a collinear stripe-ordered ground state in the
layered hexagonal antiferromagnet 2H-AgNiO2 �Ref. 5� sug-
gests a potential realization of the experimentally-unexplored
frustrated J1−J2 model in the collinear phase and here we
present first inelastic neutron-scattering measurements which
give information about the spin gap and dispersion relations.
We find that the data can be parametrized by a spin-wave
dispersion relation for a J1−J2 triangular antiferromagnet
with strong easy-axis anisotropy and weak interlayer cou-
plings.

Delafossite materials of the type XNiO2 have been gener-
ally thought of as possible two-dimensional frustrated mag-
nets. A network of edge-sharing NiO6 octahedra leads to a
triangular lattice arrangement of Ni ions in planes spaced by
layers of X+ ions. There have been a variety of studies inves-
tigating the properties of compounds where X=Li,Na.
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FIG. 1. �Color online� Phases of the Heisenberg triangular lat-
tice antiferromagnet �120° coplanar order, collinear stripes and in-
commensurate spiral� as a function of the ratio between the first-
and second-neighbor couplings, J1 and J2, respectively. In the col-
linear phase the common spin direction is spontaneously chosen
and can point anywhere, it is shown here in-plane for ease of
visualization.
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LiNiO2 has shown no long-range magnetic order but experi-
ments are hindered by the difficulty in preparing stoichio-
metric samples.6 From elastic and inelastic neutron-
scattering measurements, NaNiO2 was found to be a spin-1/2
system with in-plane �unfrustrated� ferromagnetic interac-
tions and weak antiferromagnetic interlayer couplings.7

We have recently started exploring the delafossite
AgNiO2, which shows frustrated antiferromagnetic in-plane
interactions.8,9 Detailed structural studies have been per-
formed on the hexagonal polytype of AgNiO2, so-called
2H-AgNiO2 with two NiO2 layers per unit cell �see Fig.
2�b��, as opposed to the earlier-synthesized rhombohedral 3R
polytype8 with a three-layer stacking sequence along c axis.
High-resolution neutron-diffraction measurements of
2H-AgNiO2 have observed a structural transition upon cool-
ing below 365 K, which leads to a periodic arrangement of
expanded and contracted NiO6 octahedra.10 This was
proposed5 to be a consequence of spontaneous charge order
on the Ni sites driven by the need to lift a twofold orbital
degeneracy. This leads to a strongly magnetic Ni1 site
�spin-1 Ni2+, 1/3 of sites� arranged in an ideal triangular
lattice �see Fig. 2�a��, with the remaining 2/3 of Ni sites
being Ni3.5+ with an itinerant character.

Magnetic order occurs below TN=19.7�3� K �Ref. 10�
when the magnetic moments of Ni1 sites order in a collinear
pattern of alternating ferromagnetic rows �stripes� in the tri-
angular layers with spins pointing along the c axis, as shown
in Fig. 3�a�. A large ordered moment is found on the Ni1
sites, 1.552�7��B at 4 K, and no significant ordered moment
could be detected on the remaining Ni2 and Ni3 sites, pro-
posed by band-structure calculations5 to be strongly itinerant
and possibly ordered but with only a very small ��0.1�B�
moment. So to a first approximation the coherent spin dy-
namics in the magnetically ordered phase is expected to be
dominated by the S=1 Ni1 spins arranged on an ideal trian-
gular lattice with antiferromagnetic couplings.

The experimentally observed collinear stripe order in Fig.
3�a� is rather unusual for a triangular antiferromagnet
�TAFM�, but has been proposed to occur for the classical
Ising model for finite second-neighbor couplings J2�0 �Ref.
11�. For the Heisenberg TAFM the collinear stripe order has
also been proposed to occur as a ground state for moderate J2
in the range 1 /8�J2 /J1�1, Ref. 3. In this range the classi-
cal ground state is macroscopically degenerate and there are
many other noncollinear states degenerate with the two-
sublattice collinear stripe order shown in Fig. 3�a�, but zero-
point quantum fluctuations are predicted to select the latter
through the “order by disorder” mechanism. The large clas-
sical degeneracy is manifested also in the linear spin-wave
dispersion which has many soft points with zero energy, and
proper inclusion of quantum corrections leads to renormal-
izations of the semiclassical dispersion relation and a gap-
ping of the nonphysical zero modes.3 Those effects have re-
mained experimentally largely unexplored. The recent
observation5 of a collinear stripe ordered phase in the hex-
agonal magnet AgNiO2 suggested a possible experimental
realization of the S=1 TAFM in the range of moderate frus-
tration and motivated us to measure its spin dynamics in
some detail. We note that the physics we are exploring here
appears to be different to that in the recently explored S
=5 /2 TAFM CuFeO2 which has a related but different col-
linear structure of alternating “double stripes” �↑↑ ↓↓� stabi-
lized by strong three-dimensional �3D� and third-neighbor
in-plane couplings.12 In 2H-AgNiO2 the magnetic structure
is a �simpler� single-stripe pattern ↑↓ with only two in-plane
sublattices possibly stabilized by fewer exchanges �only first
and second in-plane neighbors� and easy-axis anisotropy.

The plan of this paper is as follows. The following Sec. II
gives details of the inelastic neutron-scattering experiments
to probe the powder-averaged spin dynamics and the results
are presented in Sec. III. In the following Sec. IV A the data
are parametrized in terms of an empirical sinusoidal disper-
sion model with minima at magnetic Bragg wave vectors and
different zone boundary energies along the three orthogonal
directions in the Brillouin zone �BZ�; this parametrization

FIG. 2. �Color online� �a� Triangular lattice formed by Ni1 sites
�dark brown spheres� in a hexagonal NiO2 layer in 2H-AgNiO2;
thick arrows indicate the paths for the in-plane NN and NNN ex-
changes J1 and J2. Dashed diamond shows the crystallographic unit
cell. Gray spheres are Ni2 and Ni3 sites, assumed nonmagnetic. �b�
3D view of the crystal and magnetic structure. There are two
symmetry-equivalent NiO2 layers per unit cell. Layer stacking is
such that Ni1 ions sit above the center of a Ni1 triangle in the layer
below. We consider two natural candidates for interlayer couplings:
Jz between Ni1 ions in adjacent layers �three neighbors above and
three below� and Jz� between Ni1 ions at two layers apart.

FIG. 3. �Color online� �a� Magnetic structure in a triangular
layer showing the alternating stripe order of the Ni1 spins �� sym-
bols indicate the projection of the ordered spin moments along the c
axis�. x and y labels indicate a natural orthogonal coordinate system
with x along and y transverse to stripes. Solid diamond indicates the
magnetic unit cell doubled along the crystallographic a axis com-
pared to the chemical unit cell �light gray shaded area�. The de-
picted magnetic structure has stripes running along the b axis and
ordering wave vector k= �1 /2,0 ,0�; equivalent domains are ob-
tained by rotating this pattern by �60° around the c axis. Further
neighbor couplings are required to stabilize this structure with re-
spect to the ferrimagnetic honeycomb up-up-down pattern shown
in �b�.
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gives a gapped and predominantly two-dimensional disper-
sion relation. In the following Sec. IV B the data are com-
pared with linear spin-wave theory for a microscopic spin
Hamiltonian for the localized Ni spins that includes both
first- and second-neighbor antiferromagnetic couplings in the
triangular layers, easy-axis anisotropy modeled by a single-
ion term, and different models for interlayer couplings con-
sistent with the crystal structure; a minimal spin Hamiltonian
is proposed. In the following Sec. IV C we consider how
magnon interactions included at order 1 /S in spin-wave
theory renormalize the dispersion relation and find slightly
renormalized values for the proposed spin interactions. Fi-
nally, the results for the spin dynamics are summarized and
discussed in the concluding Sec. V. Technical details of the
spin wave calculations for coupled easy-axis triangular lay-
ers are given in Appendix A. Details of the derivation of the
1 /S quantum corrections to the dispersion relation for an
easy-axis triangular antiferromagnet are given in Appendix
B.

II. EXPERIMENTAL DETAILS

Powder samples of the hexagonal polytype of AgNiO2
were prepared from Ag2O and Ni�OH�2 using high oxygen
pressures �130 MPa� as described in Ref. 9. The samples
used for the inelastic neutron experiments were part of the
same batch used in previous neutron-diffraction
measurements10 performed on about half of the total sample
quantity, which revealed a high-purity hexagonal phase
��1% admixture of the rhombohedral polytype�. The crystal
structure of 2H-AgNiO2 is shown in Fig. 2�b� and is hexago-
nal with space group P6322 �no. 182� and lattice parameters
a=5.0908�1� Å and c=12.2498�1� Å �Ref. 5�. Ni ions are
located inside hexagonal �ab� layers and there are three dis-
tinct crystallographic sites: Ni1 which sit inside slightly ex-
panded NiO6 octahedra arranged in a periodic triangular lat-
tice of spacing a, surrounded by a honeycomb of contracted
NiO6 octahedra which contain the Ni2 and Ni3 sites, see Fig.
2�a�.

The powder-averaged magnetic excitation spectrum was
probed using two direct-geometry time-of-flight neutron
spectrometers: MARI, at the ISIS Facility in the U.K., and
IN6, at the Institute Laue-Langevin in France. Measurements
on MARI showed that the full dynamic range of the spin
excitations extended only up to 7.5 meV so could be ac-
cessed with incident neutrons of energy Ei=18 meV, which
gave an energy resolution of 0.61�1� meV �FWHM� on the
elastic line. Higher-resolution measurements to probe the
low-energy part of the spectrum were made using IN6 oper-
ated with incident neutrons of energy Ei=3.86 meV, which
gave a measured energy resolution of 0.142�1� meV
�FWHM� on the elastic line. The sample was cooled using
either a closed-cycle refrigerator �MARI, base temperature
4.7 K� or orange cryostat �IN6, base temperature 1.8 K�.
Measurements were made at the lowest temperatures in the
magnetically ordered phase, near the ordering transition and
at high temperatures in the paramagnetic phase.

For the MARI experiment 23 g of powder were placed in
an annular-shaped sachet to minimize absorption. For the

low-energy IN6 measurements a similar powder quantity
was placed in a plate-shaped container angled at 45° to the
incident beam and the data were corrected for neutron ab-
sorption effects using a numerical calculation for plate-
shaped samples. The scattering intensities from both instru-
ments have been converted into absolute units of S�Q ,�� of
mbarns/meV/sr/Ni1 by normalizing the raw counts to the
sample mass and to the measured scattering intensities from
a vanadium standard.

III. MEASUREMENTS AND RESULTS

An overview of the measured inelastic neutron-scattering
data is shown in Fig. 4. Below the Néel ordering temperature
TN=19.7�3� K a strong band of scattering is clearly ob-
served at low energies, E, and low wave vectors, Q= �Q�,

FIG. 4. �Color online� Powder-averaged magnetic excitation
spectrum in 2H-AgNiO2 in the magnetically ordered phase �top
panels �a� and �c�� showing a band of spin excitations above a small
gap, �b� in the paramagnetic phase at high temperature showing an
overdamped signal and �d� slightly above the magnetic ordering
temperature showing a filling-in of the spin gap �compare with �c��.
Data are raw counts collected after 35 h �a� and 4.5 h �c� and
normalized to absolute units as described in the text. The streak of
intensity in panel �c� near Q=1.1 Å−1 is nonmagnetic and attrib-
uted to an acoustic phonon dispersing out of the �002� structural
Bragg peak. Middle panels show the intensity distribution for the
empirical dispersion model in Eqs. �1� and �3�. The calculations
include convolution with the instrumental resolution, the magnetic
form factor, polarization factor, and an estimate of the nonmagnetic
background to be directly compared with the data in the panels
immediately above. Thick bold arrows labeled A–E indicate the
location of scans plotted in Figs. 5�A�–5�E� and the gray dotted
lines in all plots indicate the low-Q edge of the measured region.
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��Figs. 4�a� and 4�c��, attributed to magnetic excitations.
The intensity of the signal decreases with increasing wave
vector Q, confirming its magnetic character. The intensity
starts above a small gap of 1.8 meV and extends up to 7.5
meV, above which the signal decreases to background level.
This energy scale for the magnetic excitations spectrum is
consistent with susceptibility measurements which observed
a Curie-Weiss temperature of kB	=−9.2 meV �Ref. 10�. En-
ergy scans through the data at constant wave vectors show-
ing the low energy gap and the full extent of the scattering
are shown in Figs. 5�A� and 5�E� �solid points�. The dashed
line in those plots indicates the estimated nonmagnetic back-
ground, obtained by a smooth interpolation of the signal ob-
served at energies below and above the magnetic signal. The
energy gap to magnetic excitations fills up upon heating
through the Néel temperature �compare Fig. 4�c� with Fig.
4�d� and scans shown in Fig. 6�. The structured band of
magnetic scattering is replaced as expected by an over-
damped signal in the paramagnetic phase at high tempera-
tures; compare Fig. 4�a� with Fig. 4�b� and various scans in
Fig. 5�E�.

At the lowest temperatures the boundaries of the magnetic
scattering show considerable structure which can be used to
impose constraints on the underlying dispersion relation. In
particular information is contained in the gap, extent of

bandwidth, slope of low-Q dispersion up to the first mini-
mum gap �see Fig. 4�a�� and the low-energy dispersion
��10% of bandwidth� between subsequent minimum gap
wave vectors �see Fig. 4�c��. The powder data are a spherical
average of the dispersions along all directions in reciprocal
space weighted by the neutron structure factor, so the low-
energy boundary of the powder data corresponds to the dis-
persion along some direction in reciprocal space which has
the minimum energy at a given Q. In general the spin-wave
dispersion has global minima at magnetic Bragg wave vec-
tors and here strong low-energy scattering is expected. This
is consistent with the data in Fig. 4�c� showing clear lobes of
magnetic scattering intensity coming down in energy near
wave vectors 0.7 and 0.9 Å−1 where the first two magnetic
Bragg peaks �1/2,0,0� and �1/2,0,1� occur; a constant energy
scan near the gap minimum is shown in Fig. 5�D�. Inelastic
intensity occurs near the same wave vectors as magnetic
Bragg peaks in the diffraction pattern shown in Fig. 5�D�
bottom panel �data from the GEM diffractometer at ISIS�.
The low-energy boundary of the scattering is clearly modu-
lated as a function of wave vector and the onset energy var-
ies as a function of wave vector Q as illustrated by compar-
ing energy scans in Figs. 5�B� and 5�C�.

IV. ANALYSIS

The modulations observed in the lower boundary of the
magnetic scattering indicate strongly dispersive excitations,
however, in principle it is not possible to extract precise dis-
persion relations from the powder data, which represents an
average along all directions in reciprocal space. Neverthe-
less, if the dispersion is highly asymmetric along different
directions and if in-plane and out-of-plane lattice parameters
are sufficiently different then the lower boundary of the scat-
tering can be identified over certain Q ranges with the dis-
persion along specific directions in reciprocal space, so one
may impose certain constraints on the dispersion model. Fol-
lowing this approach we have found two models for the dis-
persion relation that could both explain the observed wave-
vector dependence of the boundaries of the powder-averaged
spectrum and present them in the following.
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FIG. 5. �Color online� Scans through the powder data along
special directions labeled A–E in Fig. 4. Scan D shows that there is
structure in the low-energy inelastic signal for wave vectors where
Bragg peaks occur �lower panel in D shows diffraction data indi-
cating magnetic Bragg peaks�. The energy scan E integrates over a
broad Q range and shows the full bandwidth of the magnetic exci-
tations: low temperature data �solid points� are replaced in the para-
magnetic phase at high temperatures by an overdamped signal �tri-
angles, solid line is a guide for the eyes�. In panels A–D the thick
solid lines show calculations for the sinusoidal dispersion model in
Eqs. �1� and �3� with dispersion relations plotted in Fig. 7. The
green dashed lines indicate the estimated nonmagnetic background.
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FIG. 6. �Color online� Energy scan at the minimum gap wave
vector showing a filling of the gap upon heating above the magnetic
ordering temperature. Solid lines are guides for the eyes and the
dashed line indicates the estimated nonmagnetic background.

WHEELER et al. PHYSICAL REVIEW B 79, 104421 �2009�

104421-4



A. Parametrization by an empirical sinusoidal dispersion
model

We first consider a parametrization of the data by an em-
pirical sinusoidal dispersion model with a finite gap 
 above
the magnetic Bragg peaks and different zone boundary ener-
gies along the three orthogonal directions in the Brillouin
zone: E1 along the magnetic stripe direction, E2 transverse to
stripes in the plane, and Ez in the interlayer direction. In
detail we consider the following empirical form for the dis-
persion relation �Q:

��Q�2 = 
2 + �E1
2 − 
2�sin2�Qxa/2� + �E2

2 − 
2�sin2�Qya�3/2�

+ �Ez
2 − 
2�sin2�Qzc/2� , �1�

where Qx, Qy, and Qz are components �in Å−1� of the wave
vector transfer Q in an orthogonal coordinate system with x
along the magnetic stripes, y transverse to stripes in plane,
and z normal to the planes. The transformation to wave vec-
tor components �h ,k , l� in units of the reciprocal lattice of the
hexagonal unit cell is given by

Qx = −
2�

a
k ,

Qy =
2�

a�3
�2h + k� ,

Qz =
2�

c
l . �2�

Figure 7 shows a plot of this dispersion relation along vari-
ous symmetry directions in the Brillouin zone and Fig. 8�b�
shows a 2D contour map of the dispersion. The minimum
gap 
 is reached at the origin and at all magnetic Bragg peak
positions �H ,K ,L��k with k= �1 /2,0 ,0� the ordering wave
vector and H, K and L integers. In order to compare this
dispersion relation with the data one needs also a model for
the neutron-scattering cross section. We assume the follow-

ing simple form for the one-magnon cross section:

Sxx�Q,�� = Syy�Q,�� = CS

2
��k�max

1 − �Q

�
G�� − �Q� . �3�

Here C is an overall scale factor and �1−�Q� is a geometric
factor to concentrate the intensity near the antiferromagnetic
Bragg peak wave vectors �H�1 /2,K ,L� with H, K, L inte-
gers, �Q=cos�Qxa /2�cos�Qya�3 /2�. The 1 /� factor is a
characteristic energy dependence of the spin-wave structure
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FIG. 7. Sinusoidal dispersion relation in Eq. �1� plotted along
symmetry directions in the Brillouin zone in Fig. 8�b� �dashed
lines�. Dispersion parameters are 
=1.78 meV, E1=5.73 meV,
E2=4.15 meV, and Ez=2.33 meV.

FIG. 8. �Color online� �a� Reciprocal basal plane of 2H-AgNiO2

showing the Brillouin zone edges �thick line hexagons�, zone cen-
ters �solid points�, and locations �stars� of magnetic Bragg peaks
from the ordered domain shown in Fig. 3�a� with stripes along the b
axis. Labels , M, and K indicate special symmetry points in the
hexagonal Brillouin zone �M� and M� are Bragg peak positions for
equivalent ordered domains with stripes along a+b and a, respec-
tively�. Dashed gray lines show directions along which the disper-
sion is plotted in Fig. 10. Arrows labeled x and y indicate the natu-
ral orthogonal coordinate system used for the empirical dispersion
model in Eq. �1�. ��b� and �c�� Color contour maps of the dispersion
in the �ab� plane in the two models consistent with the data: �b� the
empirical parametrization with a sinusoidal dispersion plotted in
Fig. 7 and �c� the linear spin-wave model for J1−J2 triangular lay-
ers with easy axis and interlayer couplings in Fig. 10�d� �dashed
line�. Note that in model �b� the minimum gap occurs at the mag-
netic Bragg wave vector M, whereas in model �c� the minimum gap
occurs at the soft point M�.
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factor for antiferromagnets and ��k�max is the maximum
magnon energy for all wave vectors k, and is introduced here
for dimensionality purposes. S=1 is the spin quantum num-
ber. Equation �3� includes the fact that spin fluctuations oc-
cur in the plane transverse to the ordered spin direction in a
collinear antiferromagnet, so x and y refer to two orthogonal
directions in the hexagonal ab plane and z is along c. This
form is a generic structure factor for many simple spin-wave
models of collinear antiferromagnets. Here G��−�Q� is a
Gaussian function which models the instrumental resolution.

A spherical average of the intensity distribution of Eq. �3�
including the neutron polarization factor, magnetic form fac-
tor for Ni2+ ions �as in Eq. �A5��, and an estimated additive
nonmagnetic background �including the incoherent elastic
line� was compared to the data and the overall comparison is
shown in the middle panels of Fig. 4. The overall bandwidth
and the observed structure in the data at low energies is well
reproduced by this model for gap 
=1.78�5� meV, E1
=5.73�4� meV, E2=4.15�6� meV and Ez=2.33�5� meV in
Eq. �1�. The maximum magnon energy is ��k�max
=7.0 meV and an overall scale factor C�0.35 in Eq. �3�
gives intensities comparable to data.

To analyze the agreement quantitatively we first show in
Fig. 9�a� how the lower boundary of the powder-averaged
magnetic signal can be identified over certain wave-vector
ranges with the dispersion along particular directions in re-
ciprocal space. In particular the observed sharp low-Q dis-
persion up to the first gap minimum near QM =0.7 Å−1 in

Fig. 4�a� is attributed to the dispersion between the origin
�000� and the closest magnetic Bragg peak at M�1 /2,0 ,0�;
scan A along the direction indicated by the bold arrow in Fig.
4�a� is therefore very sensitive �at low energies� to the M
dispersion and a fit to this scan shown in Fig. 5�A� gives
E2=4.15�0.06 meV, the zone boundary along the direction
transverse to stripes in plane. To explain the observed full
extent of the bandwidth up to 7.5 meV another dispersion
larger in magnitude is required and this is assigned to the
direction along the stripes, E1, since the interlayer dispersion
bandwidth Ez−
 is assumed to be small. Quantitative fits
give E1=5.73�0.04 meV. The energy scan in Fig. 5�B� is
sensitive to the gap above the magnetic Bragg wave vector,
obtained as 
=1.78�5� meV. The energy scan in Fig. 5�C� is
at a wave vector corresponding to the midpoint between two
subsequent Bragg wave vectors along the c axis, �1/2,0,1�
and �1/2,0,2� �see Fig. 9�a��, so this scan is sensitive to the
interlayer zone boundary and fits give Ez=2.33�0.05 meV,
thus obtaining the last parameter of the empirical dispersion
relation.

Figure 9 shows in more detail the agreement between the
experimentally determined onset of the magnetic scattering
�stars� and the empirical model �various solid lines� in panel
�a� and the calculated powder-averaged spectrum in panel
�b�. The onset points were determined from scans through
the measured powder data at fixed wave vector Q and locat-
ing the energy where the magnetic intensity was above a
minimum threshold value. The model reproduces well the
shape of the lower edge of the scattering. Fits to specific
scans shown in Figs. 5�A�–5�D� give good account of the
onset and upper boundary of the scattering. The form of the
intensity distribution within the excitation band is not repli-
cated in detail, as seen for example in Fig. 5�A� where the
simulation gives a more pronounced trough in the intensity
in the middle of the band. This is almost certainly due to the
oversimplification of the model.

B. Parametrization in terms of an easy-axis Heisenberg model
on a triangular lattice

The empirical sinusoidal dispersion model considered in
Sec. IV A is the simplest dispersion model that can be used
to parametrize and explain quantitatively the observed dis-
persion of the boundaries of the powder-averaged magnetic
inelastic scattering. This analysis suggested that the disper-
sion relation is gapped and predominantly two dimensional.
Here we compare the data quantitatively with predictions of
linear spin-wave theory for a microscopic model of coupled
triangular layers where we include antiferromagnetic in-
plane couplings for the first- and second-neighbor exchanges
J1 and J2, an easy-axis anisotropy and allow for both first-
and second-layer couplings Jz and Jz�, as shown in Figs. 2�a�
and 2�b�. Specifically, we consider the spin Hamiltonian

H0 = 	
NN

J1Si · S j + 	
NNN

J2Si · Sl − D	
i

�Si
z�2

+ 	
InterlayerNN

JzSi · Sk + 	
InterlayerNNN

Jz�Si · Sn, �4�

where the spin is S=1, NN and NNN stand for nearest-

FIG. 9. �Color online� �a� Dispersion relations for the empirical
sinusoidal model in Eq. �1� along various directions involved in
defining the low-energy edge of the powder-averaged spectrum. �b�
Corresponding powder-averaged spectrum. Stars in both panels are
the experimentally determined low-energy edge of the magnetic
scattering. Thick arrows indicate location of scans B, C, and D in
Fig. 5.

WHEELER et al. PHYSICAL REVIEW B 79, 104421 �2009�

104421-6



neighbor and next-nearest-neighbor and each spin pair is
counted once in the summation. The third term is an easy-
axis anisotropy, needed to select the ordering spin direction
along c, and to generate a spin gap in the spectrum. In the
absence of a clear physical picture of the origin of the aniso-
tropy, we have chosen a single-ion form for this term. We
anticipate that an exchange anisotropy ��J�zSi

zSj
z would have

qualitatively similar effects. Both in-plane exchanges are an-
tiferromagnetic J1 ,J2�0 whereas the interlayer couplings
are taken to be ferromagnetic Jz ,Jz��0, to stabilize the ob-
served magnetic structure shown in Fig. 2�b�.

We have calculated the spin-wave dispersion and dynami-
cal correlations for the spin Hamiltonian �4� in the large S
limit using the standard Holstein-Primakoff formalism and
details are given in Appendix A with the dispersion relations
in Eq. �A2�. To illustrate the effect of the various terms in the
Hamiltonian we plot the dispersion for a triangular lattice
with no anisotropy in Fig. 10�a� �dashed line�. The linear
spin-wave dispersion has zero modes not only at the mag-
netic Bragg peak position M for the specific ordered mag-
netic domain, but also at soft points such as M� in Fig. 8
which are Bragg peak positions for the symmetry-equivalent
domains �there are three possible magnetic domains related
by a threefold rotation around the c axis�.

The presence of such unphysical gapless modes is a con-
sequence of the macroscopic ground-state degeneracy at the
classical level and including 1 /S corrections �Fig. 10�a�,
solid line� generates a gap at the soft points but preserves a
gapless Goldstone mode at the Bragg wave vectors.3 The
situation is completely different in the presence of an easy-
axis anisotropy which generates a gap everywhere �see Fig.
10�b��; the gap at the Bragg wave vector increases very rap-
idly as a power law, whereas at the soft point increases only
linearly with anisotropy, so above some threshold anisotropy
value the minimum gap is no longer at the magnetic Bragg
wave vector M, but moves to the soft point M�.

Coupling the layers by a NN exchange Jz�0 �ferromag-
netic� has the effect of splitting the dispersion into two
modes �see Fig. 10�c��, corresponding to acoustic and optic
magnon modes between the two layers in the unit cell. The
gap minimum is no longer at the commensurate soft point
M� but at incommensurate positions symmetrically displaced
from M� along the magnetic stripe direction; see Fig. 10�c�.
The incommensurate position of the gap minimum varies
linearly with �Jz� for small Jz and it originates physically
from the fact that hopping of magnons is somewhat frus-
trated as an up spin in the bottom layer interacts through Jz
with two up and one down spin in the layers above and
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FIG. 10. �Color online� Dispersion relation for the stacked triangular antiferromagnetic layers within LSWT �dashed lines� and SWT
+1 /S �solid lines� for various values of the parameters. The dispersion is plotted along high-symmetry directions in reciprocal space �dashed
line path in Fig. 8�a��, top labels are high symmetry points in the Brillouin zone. �a� Triangular lattice with antiferromagnetic couplings
J1=1.32 meV, J2=0.15J1 and no anisotropy. 1 /S quantum corrections have a large effect at the soft point M�. �b� Same as �a� but with
easy-axis anisotropy D=1.78 meV; 1 /S corrections are much smaller. �c� Triangular layers with easy-axis anisotropy and coupled by NN
interlayer exchange Jz=−0.3 meV. This leads to two incommensurate spin-wave modes with very little interlayer dispersion near the gap
minimum �last panel in the row�, not consistent with data. �d� Triangular layers with anisotropy coupled by second-layer exchange
Jz�=−0.14 meV; this model gives the best fit to the data. Dashed �solid� line shows best fit using LSWT �SWT+1 /S� with parameter values
given in Table I.
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below; see Fig. 15�b�. Moreover, there is very little interlayer
dispersion of the gap minimum, i.e., between soft points M�
with different L values �see Fig. 10�c� last panel�, also due to
frustration in the magnon interlayer hopping at those wave
vectors.

Both of these features, incommensurate minima in the
dispersion displaced �in-plane� away from M� and very weak
interlayer dispersion of the gap minimum, are inconsistent
with the data, which shows minima in the scattering at wave
vectors very close to those corresponding to the commensu-
rate M� point and a significant ��10% of the total band-
width� interlayer dispersion of the gap minimum. This sug-
gests that the observed interlayer dispersion is not due to the
nearest-neighbor interlayer exchange Jz but is due to another
interlayer coupling.

To find a possible explanation for the observed interlayer
dispersion we now assume Jz=0 and consider the effects of a
ferromagnetic second-layer coupling Jz� straight up along the
c axis; see Fig. 2�b�. The resulting dispersion is plotted in
Fig. 10�d� �dashed line�; there is a single mode with essen-
tially the same features as for decoupled triangular layers
�see Fig. 10�b�� with global minima at the commensurate soft
point M� but now there is a modulation in the energy as a
function of L value to first order in Jz�. This model can ac-

count for all observed dispersions in the boundaries of the
powder-averaged spectrum and the calculation for the best fit
parameter set is plotted in Figs. 11�a� and 11�b� to be com-
pared with data in Figs. 4�a�–4�c�.

In the calculation we used the dynamical correlations in
Eq. �A3�, included polarization factor and magnetic form
factor as in Eq. �A5�, and performed a spherical average. An
overall intensity scale factor C�0.57 gives intensities com-
parable to data; we do not attach special significance to this
value except that it is comparable to the LSWT prediction of
C=1. The intensity distribution is also reasonably well cap-
tured by the model as shown by the typical scans in Fig. 12;
any differences compared to the data may be due to interac-
tions beyond the minimal spin Hamiltonian considered.

To obtain quantitative values for the model parameters we
have used the fact that various parts of the spectrum are
mostly sensitive to only one parameter; in particular the gap
depends only on anisotropy via 
M�=2SD�1− 1

2S �, the upper
boundary of the spectrum is mostly sensitive to the main
coupling J1, the magnitude of the low-energy dispersion be-
tween the gap minima with L=1 and 2 is given by 4S�Jz��.
The remaining parameter J2 is extracted from the slope of the
low-Q dispersion up to the first gap minimum. Specifically, a
fit to scan B at the minimum gap �Fig. 12�B�� gives the

(b)(a)

(c) (d)

FIG. 11. �Color online� Powder averaged spin-wave spectrum for easy-axis triangular layers with/without �top/bottom� interlayer cou-
plings. Left panels to be compared with Fig. 4�a� and right panels to Fig. 4�c�. The parameters are J1=1.32 meV, J2=0.15J1, D
=1.78 meV, Jz=0, and Jz�=−0.14 meV �top panels� or Jz�=0 meV �bottom panels�. The calculations contain an additive flat background.
The various lines overplotted onto the intensity color maps show the dispersion along the directions from the origin  point to the closest soft
points at M��1 /2,−1 /2,0� �and the L=1 and L=2 versions of this� and M��1,−1 /2,0�, with minima at wave vectors indicated by the
vertical arrows in the right panels. The dispersion at the lower boundary of the scattering in �b� is very similar to the data in Fig. 4�c� and
are attributed to the weak interlayer couplings �no interlayer dispersion is present in �d� calculated for decoupled layers�. The dotted lines at
low-Q mark the left edge of the region probed by the experiments.
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anisotropy D, scan C probes the interlayer dispersion so
gives Jz�, fits to scans A and E upper boundary �Fig. 12�E��
give the main coupling J1 and fits to scan A lower boundary
give the secondary coupling J2.

The best fit values for the parameters obtained this way
are shown in Table I. The calculated powder-averaged spec-
trum is shown in Figs. 11�a� and 11�b� and compares well
with the data in Figs. 4�a�–4�c�. To emphasize the sensitivity
of the data to the 3D couplings we also plot in Figs. 11�c�
and 11�d� the powder-averaged spectrum assuming decou-
pled layers, which reproduces the bandwidth, gap, and slope
of the low-Q dispersion up to the first gap minimum but not
the low-energy dispersion ��10% of bandwidth� between
subsequent minimum gap wave vectors.

In the above analysis we neglected the NN interlayer cou-
pling Jz since the powder data are not very sensitive to its
presence; in particular a finite Jz produces only a negligible
interlayer dispersion of the gap minimum �dispersion appears
only at order Jz

2 /D for small Jz�. Using the fact that a finite Jz
produces a small incommensurate shift of the minimum gap
wave vector an upper bound for the maximum Jz that would
still be consistent with the data can be estimated as �Jz�
�0.25 meV.

Within the minimal model we considered in Eq. �4� the
estimated values of the interaction parameters would give a
Curie-Weiss constant expected in a high-temperature suscep-
tibility measurement on a powder sample as13

kB	 = −
1

3
S�S + 1��6J1 + 6J2 + 2Jz�� = − 5.9 meV.

This is smaller than, but comparable to, the experimental
value of kB	=−9.2 meV extracted from high-temperature
susceptibility data10 and the difference may be due to other

interactions beyond the minimal model we have considered
to explain the dispersive boundaries of the powder data.

C. Spin-wave theory with 1 ÕS corrections for easy-axis
triangular layers

In the absence of anisotropy the 2D triangular J1−J2 an-
tiferromagnet in the collinear phase has been shown to ex-
hibit a strong renormalization of the dispersion relation due
to quantum fluctuations. Including the effects of fluctuations
to order 1 /S in spin-wave theory3 generates a gap at the soft
points where the LSWT calculation predicts unphysical gap-
less modes, as illustrated in Fig. 10�a� solid line is SWT
+1 /S and dashed is LSWT.

In Appendix B we have calculated the 1 /S corrections to
the dispersion relation for the triangular antiferromagnet
when an easy-axis anisotropy is also present and the results
are plotted in Fig. 10�b�. The energy at the soft point is now
only marginally renormalized up in energy because the easy-
axis anisotropy generates a gap in the spectrum and this re-
duces significantly the zero-point quantum fluctuation ef-
fects. Using the 2D dispersion relation at order 1 /S and
including also the interlayer coupling the best parameter val-
ues obtained from comparison to the data are very similar to
those found using LSWT and are shown in Table I. The
dispersion relation at order 1 /S for these parameters is plot-
ted in Fig. 10�d� �solid line� and is very similar to the LSWT
dispersion for the uncorrected parameters �dashed line�. The
powder-averaged spectrum is also similar to Figs. 11�a� and
11�b� for the uncorrected parameters and is therefore not
reproduced here.

In converging to the above set of parameter values for the
microscopic Hamiltonian we have used two constraints im-
posed by the data �i� the interlayer dispersion is relatively
small, �10% of the bandwidth, as inferred from the ob-
served small dispersion in the low-energy boundary of the
magnetic inelastic scattering, and �ii� the spin gap is rela-
tively large, �30% of the bandwidth, which in turn implies a
relatively large easy-axis anisotropy. Specifically, subtracting
the estimated interlayer dispersion magnitude from the ob-
served maximum energy leads us to search for a 2D disper-
sion shape where the gap energy divided by the maximum,
i.e., the reduced gap 
 /�max, is �25%.

The dispersion of the microscopic Hamiltonian in Eq. �4�
has the minimum either at the Bragg peak position M, or at
the soft point M�. This places a strong constraint on model
parameters, since both reduced gaps must be at or above the
threshold value of 25%, with at least one gap precisely at the

TABLE I. Table of best fit values for easy-axis Heisenberg model applied to AgNiO2. In both cases fits
are obtained by comparing the spin-wave dispersion calculated within linear spin-wave theory, and including
leading interaction corrections, with the envelope of the powder-averaged spin structure factor S�Q ,E�
measured by inelastic neutron scattering. We set S=1 and Jz
0 in all fits. All exchange parameters are given
in meV.

S J1 J2 D Jz Jz�

LSWT 1 1.32�5� 0.15�3� 1.78�5� 0 −0.14�2�
SWT+1 /S 1 1.35 0.15 1.59 0 −0.14

Energy (meV)
2 4 6 8

In
te

ns
ity

0

10

20

30

40

50
Data
LSWT

Energy (meV)
1.0 1.5 2.0 2.5

0

10

20

30

Data
LSWT

In
te

ns
ity

EB
Q = 0.8±0.2 ÅQ = 0.7±0.025 Å-1 -1

FIG. 12. �Color online� Comparison between data �filled points�
and the linear spin-wave model for easy-axis triangular layers �solid
lines�. Dashed lines show the estimated nonmagnetic background
and parameters are as in Fig. 11�a�.
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threshold. In Fig. 13 we map out these constraints for
�J2 /J1 ,D /J1� parameter space, with gaps calculated using
spin-wave theory with 1 /S corrections, as described in Ap-
pendix B. Possible solutions lie on the solid line dividing
solutions where the reduced gap 
M� /�max�25% from those
where 
M� /�max�25%.

On this line other features in the data such as the observed
slope of the low-Q dispersion further narrow down possible
parameter values, leading to the best fit values. So within the
minimal microscopic Hamiltonian considered the require-
ment for quantitative agreement for the absolute gap relative
to the maximum energy requires a relatively large anisotropy,
and in this case the dispersion minimum is at the soft point
M� as illustrated in Fig. 10�d� �solid line�.

V. DISCUSSION AND CONCLUSIONS

We have reported inelastic neutron-scattering measure-
ments of the powder-averaged spin dynamics in the layered
hexagonal antiferromagnet 2H-AgNiO2, which has a collin-
ear alternating stripe-ordered ground state. A broad band of
magnetic inelastic scattering is observed above a finite gap
indicating strongly dispersive magnetic excitations. The ob-
served modulations in the boundaries of the magnetic scat-
tering could be well explained by a gapped and predomi-
nantly two-dimensional dispersion relation, suggesting
magnetically weakly coupled triangular layers. For a quanti-
tative analysis we have considered a minimal spin Hamil-
tonian in Eq. �4� for the localized Ni1 ions �S=1� located on
an ideal triangular lattice and have neglected the coupling to
the itinerant electrons on the surrounding Ni sites. Within
this localized model we considered first- and second-
neighbor antiferromagnetic couplings J1 and J2=0.15J1 in

the triangular layers, a strong easy axis anisotropy modeled
by a single ion term D�1.3J1, and weak interlayer cou-
plings Jz�=−0.1J1 and have found that this minimal model
can account quantitatively for all the observed wave-vector
dependence of the boundaries of the powder-averaged spec-
trum.

The deduced values of the magnetic interactions provide a
natural explanation for the stability of the observed collinear
alternating stripe magnetic order. The large value for the
easy-axis anisotropy strongly modifies the physics of an an-
tiferromagnet on a triangular lattice. First, it stabilizes collin-
ear order at the expense of coplanar states like the 120°
spiral ground state of a simplest nearest-neighbor Heisenberg
model. Second, it opens a gap to spin excitations which
strongly suppresses quantum zero-point fluctuations. These
are essential for the “order from disorder” selection of col-
linear order in the isotropic J1−J2 model considered by Chu-
bukov and Jolicoeur.3 But in the easy-axis J1−J2 model rel-
evant to AgNiO2, fluctuations lead only to small quantitative
corrections to the spin-wave dispersion.

We have calculated these corrections explicitly to O�1 /S�
and find that, for most purposes, they can safely be neglected
as they only lead to a very modest renormalization of the
spin-wave dispersion—and the parameters inferred from
it—as illustrated in Table I. Competing interactions such as
J2 also play a secondary role, selecting the observed form of
collinear order from the vast manifold of Ising ground states
on a triangular lattice. The extent of the collinear AF phase
as a function of �J2 /J1 ,D /J1� can easily be estimated within
mean-field theory. The results of this analysis are shown in
Fig. 14. The parameter set deduced above, with strong aniso-
tropy D but relatively small second-neighbor interaction J2,
places AgNiO2 within the collinear AF phase—as required—
but not far from the boundary with a coplanar three-
sublattice state.

At present, the origin of this strong easy-axis
anisotropy—which may be of single-ion or exchange
character—is unclear. AgNiO2 is a highly anisotropic mate-

FIG. 13. �Color online� Constraints on the parameters J2 /J1 and
D /J1 determined from the spin gap measured in inelastic neutron-
scattering experiments. Gaps at M and M� are calculated within
SWT+1 /S discussed in Appendix B, and normalized to the maxi-
mum energy for spin excitations. The upper solid line divides solu-
tions where the calculated gap at M� is larger than that seen in
experiment, from those where it is smaller. The point J2 /J1�0.15,
D /J1�1.2 which gives the best fit overall fit to experiment is
marked with an open circle. The region of small D for which nei-
ther the gap at M nor M� are large enough to fit experiment is
bounded by a dashed line. Linear spin-wave calculations give simi-
lar lines, slightly shifted. �The small region of parameter space
D /J1�0, J2 /J1�1 /8 for which spin-wave theory is ill-conditioned
is shown by the red hatched area.�

FIG. 14. �Color online� Ground-state phase diagram of the easy-
axis Heisenberg model on a triangular lattice as a function of J2 /J1

and D /J1, calculated from mean-field theory. The parameters
J2 /J1�0.15, D /J1�1.3 deduced from linear spin-wave theory fits
to inelastic neutron-scattering data place AgNiO2 within the collin-
ear AF phase, not far from the boundary with a coplanar three-
sublattice state.
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rial, and the crystal fields at the magnetic sites will reflect
this. However, relativistic �i.e., spin-orbit coupling� effects in
Ni are not usually strong, so the absolute size of anisotropy
is surprising. The more massive Ag ions, which have stron-
ger spin-orbit coupling, are nonmagnetic, and thought to play
a negligible role in interactions between the Ni2+ sites. How-
ever, given the partially itinerant nature of Ni electrons, a
simple local-moment model such as Eq. �4� is probably un-
likely ever to offer a complete description of the magnetism
in AgNiO2.

Further band-structure calculations based on the model
developed in Ref. 5 could potentially test the proposed mini-
mal Hamiltonian and give further insight into the micro-
scopic origin of the exchange interactions and easy-axis an-
isotropy. Of particular interest would be the contribution of
the itinerant Ni2 and Ni3 sites which surround the strongly
magnetic Ni1 sites to magnetic excitations, and their role in
mediating interactions between localized Ni1 sites. Even
though the dispersions of the boundaries of the powder-
averaged data are well explained by Eq. �4�, there are dis-
crepancies in the intensity distribution as a function of en-
ergy and wave vector �see Fig. 12�E��, and these may contain
information about the itinerant electrons. It is also interesting
to ask whether the weak but long-range interlayer interaction
Jz� could be of RKKY origin. This is a promising avenue for
future research, and recent transport experiments on AgNiO2
in high magnetic field reinforce the idea that charge carriers
couple strongly to the magnetic order.16

Even without these complications, the minimal micro-
scopic model we have proposed has a number of very inter-
esting features. In particular it predicts a spin-wave disper-
sion with global minima not at magnetic Bragg wave vectors
but at symmetry-related soft points. This prediction could be
tested by future inelastic neutron-scattering experiments on
single crystals or by ESR experiments, which probe the ex-
citations at the  point, which by periodicity have the same
energy as those at the magnetic Bragg wave vector. We note
that the unusual dispersion relation we propose with global
minima at multiple soft points may lead to nontrivial mag-
netically ordered phases in applied magnetic fields that over-
come the spin gap and future studies of the phase diagram in
high applied magnetic field along the easy axis could show a
rich behavior that would be fruitful to explore
experimentally16 and theoretically.17
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APPENDIX A: LINEAR SPIN-WAVE DISPERSIONS FOR
COUPLED TRIANGULAR LAYERS

Here we outline the derivation of the linear spin-wave
dispersion relations for a model of stacked antiferromagnetic

triangular layers with collinear stripe order. The experimen-
tally determined magnetic structure in 2H-AgNiO2 is shown
in Fig. 15. In each triangular Ni layer the ordered spins form
alternating ferromagnetic rows described by two magnetic
sublattices �up/down�, leading to a total of four magnetic
sublattices for the two layers in the magnetic unit cell �box in
Fig. 15�b��. After a Holstein-Primakoff transformation from
spin to magnon operators and Fourier transformation the spin
Hamiltonian in Eq. �4� becomes

H = 	
q

X†HX + E0,

where E0 is a constant and terms higher than quadratic are
neglected. The sum extends over all wave vectors q in the
first magnetic Brillouin zone. The q dependence of the op-
erator matrix X and of the Hamiltonian matrix H is implicit.
The operator matrix X† is given by

X† = ��q
†,�q

†,�−q,�−q� ,

where �, �, �, and � refer to the magnetic sublattices 1, 2, 3,
4 �in this order� and �q

† creates a plane-wave magnon mode
on sublattice 1, and so on. The Hamiltonian matrix in this
operator basis is

H = �
A B C D�

B� A D C

C D� A B

D C B� A
 , �A1�

where

A = 2S�J1 cos�2�k� + J1 + J2 cos�2��2h + k�� + J2

+ Jz� cos�2�l� − Jz� − Jz� + 2SD�1 −
1

2S
� ,

FIG. 15. �Color online� Magnetic structure of 2H-AgNiO2. �a�
In each layer spins form alternating ferromagnetic stripes �dashed
lines�, � symbols indicate the projection of the spin moments along
the c axis. Stripes are parallel between adjacent layers �thick black
symbols for layer 1 and faint gray for layer 2� but have an offset
because of the structural arrangement of Ni1 ions. Labels 1–4 refer
to the four magnetic sublattices �two for each layer� in the magnetic
unit cell �solid contour�, which is doubled along a axis compared to
the crystallographic unit cell. �b� 3D view of the magnetic structure
showing the orientation of the spin moments �thick arrows� of the
Ni1 ions �dark brown spheres� in the two layers in the unit cell.
Light gray spheres are Ni2 and Ni3 ions, assumed nonmagnetic.
The box shows the 3D magnetic unit cell.
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B = 4SJz cos��k�cos��l�� ,

C = 4SJ1 cos��k�cos���2h + k��

+ 4SJ2 cos�3�k�cos���2h + k�� ,

D = 2SJz cos��l��2,

� = e−�2h+k��i/3,

where �h ,k , l� are components of the wave vector q in units
of the reciprocal lattice of the hexagonal unit cell shown in
Fig. 2�b�. Note that the very last term in function A above,
2SD�

−1
2S , formally comes in spin-wave theory as a higher

order �1 /S� correction term, but we have included it here
following common convention,14 since it originates from a
quadratic term in boson operators.

Diagonalizing the Hamiltonian in Eq. �A1� using standard
methods15 gives two doubly degenerate modes with disper-
sions given by

��q
��2 = A2 + BB� − C2

− DD� � sgn�B/���4�AB − CD��2 − �B�D� − BD�2,

�A2�

where � stands for optic and acoustic modes between the
two layers and sgn�x� is the sign function. The above expres-
sions for the dispersion relations also hold by periodicity for
a general wave vector Q= �h ,k , l� outside the first magnetic
Brillouin zone �the two modes are degenerate when B=0 and
the prefactor sgn�B /�� in front of the square root is required
to ensure continuity of the two distinct modes on both sides
of a degenerate point�.

For decoupled triangular layers with no anisotropy �Jz
=Jz�=D=0 the dispersion is plotted in Fig. 10�a�� �dashed
line� and for the general case is plotted in Fig. 10�c� �dashed
and dash-dotted lines�. The finite easy-axis anisotropy D
�0 leads to a gap in the spectrum. The gap above the mag-
netic Bragg peaks increases as a power law with increasing

anisotropy �M
− =2S�D̃�4J1+4J2+2Jz+D̃�, where D̃=D�1

− 1
2S �. However, the gap is near linear in anisotropy at the soft

point M�, �M�
� =2S�D̃�D̃−2Jz�, so in the limit of weak cou-

plings between the layers the minimum gap is always at the
soft point M� and not at the Bragg wave vector M �see Fig.
10�b��.

The dynamical correlations �per Ni1 spin� are obtained as

Sxx�Q,�� = CS

8
� �W�− �+� + X�− �+� + Y�− �+� + Z�− �+��2

N�− �+�

+
�W��+� + X��+� + Y��+� + Z��+��2

N��+� �G�� − �+�

+ CS

8
� �W�− �−� + X�− �−� + Y�− �−� + Z�− �−��2

N�− �−�

+
�W��−� + X��−� + Y��−� + Z��−��2

N��−� �G�� − �−�

�A3�

where G��−��� is a Gaussian with a finite width to model
the instrumental resolution, we use the shorthand notation
��=�Q

� and the functions W, X, Y, Z, and N are given by

W��� = − �A + ���A2 + BB� − C2 − DD� − �2� + 2ABB�

− C�B�D� + BD� ,

X��� = C�A2 + BB� − C2 + DD� − �2� − A�B�D� + BD�

− ��B�D� − BD� ,

Y��� = B���A + ��2 − BB� + C2� − 2C�A + ��D + BD2,

Z��� = D�A2 + C2 − DD� − �2� + B�2D� − 2AB�C ,

N��� = �− WW� + XX� − YY� + ZZ�� .

The overall intensity prefactor C in Eq. �A3� is 1 in LSWT
and is considered here as a variable parameter in the com-
parison with the experimental data in order to account �in a
first approximation� for a possible overall intensity renormal-
ization compared to LSWT. We note that the above expres-
sions simplify considerably in the absence of the interlayer
coupling Jz; in that case the two magnon modes in Eq. �A2�
become degenerate with dispersion �Q=�A2−C2 and the dy-
namical correlations in Eq. �A3� become

Sxx�Q,�� = CS

2

A − C

�
G�� − �Q� . �A4�

For completeness we also quote the obtained transforma-
tion matrix S to the normal operator basis X�=S−1X in which
the Hamiltonian is diagonal

S = �
W̄��−� W̄��+� W̄�− �−� W̄�− �+�

Ȳ��−� Ȳ��+� Ȳ�− �−� Ȳ�− �+�

X̄��−� X̄��+� X̄�− �−� X̄�− �+�

Z̄��−� Z̄��+� Z̄�− �−� Z̄�− �+�
 ,

where we use the shorthand notation W̄���=W��� /�N���
and so on. This matrix satisfies the eigenvalue equation
gHS=SgH� and the normalization condition SgS†=g, where
g is the commutator matrix for the operator basis defined by

g = X�X��T − �X�XT�T = �
1 0 0 0

0 1 0 0

0 0 − 1 0

0 0 0 − 1


and

H� = �
�− 0 0 0

0 �+ 0 0

0 0 �− 0

0 0 0 �+


is the Hamiltonian representation in the normal operator ba-
sis X�.
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The one-magnon neutron-scattering intensity including
the polarization factor and the magnetic form factor is

S�Q,�� = ��ro�2�1 +
Qz

2

Q2��g

2
f�Q��2

Sxx�Q,�� , �A5�

where ��ro�2=290.6 mbarns /sr is a conversion factor to
bring the intensity into absolute units of mbarns/meV/sr,
f�Q� is the magnetic form factor for Ni2+ ions and we take
the g factor g=2. Qz is the component of the wave-vector
transfer Q along the c axis. A numerical average of Eq. �A5�
over a spherical distribution of orientations of the wave-
vector transfer Q was performed in order to obtain the
orientational-averaged intensity S�Q ,�� to be compared with
the measured powder data.

APPENDIX B: SPIN-WAVE THEORY WITH 1 ÕS
QUANTUM CORRECTIONS FOR THE EASY-AXIS J1−J2

TRIANGULAR ANTIFERROMAGNET

Here we outline calculations of corrections to spin-wave
dispersion arising from interactions between magnons at
O�1 /S�. Calculations to this order have previously been car-
ried out by Chubukov and Jolicoeur3 for the isotropic J1
−J2 Heisenberg model on a triangular lattice. Here we extend
this work to the case of a finite easy-axis anisotropy D. To
make contact with this earlier work we use here an orthogo-
nal coordinate system with x along the magnetic stripes and
y transverse to stripes in plane as in Fig. 8�b� and label the
2D wave vectors as �kx ,ky�= �Qxa ,Qya�, where Qx,y are or-
thogonal components �in Å−1� and a is the hexagonal lattice
parameter.

In the usual linear semiclassical approximation �i.e., ne-
glecting terms which contain more than two Bose operators�
we obtain a dispersion

�k = �Ak
2 − Bk

2,

with coefficients

Ak = 2SJ1�1 + cos kx + � + � cos �3ky� + 2SD̃ ,

Bk = 4SJ1 cos
�3ky

2
�cos

kx

2
+ � cos

3kx

2
� , �B1�

where �=J2 /J1 and D̃=D�1−1 / �2S��. We note that our units
differ by an overall factor of two from those in Ref. 3, and
that single-ion easy-axis anisotropy contributes terms to the
linearized Hamiltonian which are formally of order O�1 /S�
relative to usual LSWT.

The leading effect of interactions between spin waves,
treated at a one-loop �i.e., Hartree-Fock� level, is to renor-
malize the coefficients of this dispersion to give

�k = ��Ak + �Ak�2 − �Bk + �Bk�2,

where

�Ak =
2J1

N
	

p
� Āp − �̄p

2�̄p
F�k,p� +

B̄p
2

2�̄p
� ,

�Bk = −
2J1

N
	

p
� Āp − �̄p

2�̄p
B̄k −

B̄p

2�̄p
G�k,p�� . �B2�

Here, N is the total number of spins in the triangular plane,
and the sum on internal momenta p extends over the entire
nuclear Brillouin zone �large thick line hexagon in Fig. 8�a��.
Following Ref. 3, we write Z̄=Z / �2SJ1��Z=A ,B ,�� and in-
troduce the functions

F�k,p� = �1 − cos kx��1 − cos px� − 2�1 + ��

+ ��1 − cos �3ky��1 − cos �3py� −
2D
J1

,

G�k,p� = cos
�3ky + kx

2
cos

�3py + px

2

+ cos
�3ky − kx

2
cos

�3py − px

2

+ ��cos
�3ky + 3kx

2
cos

�3py + 3px

2

+ cos
�3ky − 3kx

2
cos

�3py − 3px

2
� . �B3�

Anisotropy D enters �Ak explicitly through F�k ,p�, but its
main effect is to introduce a gap into the noninteracting dis-
persion �̄k, which acts as an infrared cutoff in all denomina-

tors. In order not to mix different orders in 1 /S, we set D̃
→D in calculations of �Ak and �Bk.

To obtain quantitative results for comparison with experi-
ment, the sums in Eq. �B2� were evaluated numerically. The
resulting corrections to the linear spin-wave dispersion are
illustrated first for the case of no anisotropy in Fig. 10�a�
�solid line�. In this case we exactly reproduce the results of
Ref. 3: LSWT �dashed line� predicts a gapless mode at the
soft point M� �as an indirect consequence of the macroscopic
classical ground-state degeneracy�; however, quantum cor-
rections lift the classical degeneracy by stabilizing the col-
linear stripe order and generating a spontaneous gap at the
soft points while maintaining a gapless Goldstone mode at
the magnetic Bragg wave vectors.

In the presence of anisotropy the situation is somewhat
different. First the collinear order observed in AgNiO2 is
now stable at a classical level for a wide range of D and J2
�cf. Fig. 14�. And second, all spin excitations are now
gapped, even in the absence of fluctuation effects �see Fig.
10�b��. Expanding about collinear order, at a semiclassical
level, the gap at the Bragg wave vectors M = �0,2� /�3�
grows as


M � 2S�D̃�4J1 + 4J2 + D̃� ,

whereas at the soft points M�= �� ,� /�3� it increases only

linearly as 2SD̃. As a result, for finite D, the minimum in the
spin-wave dispersion occurs on the zone boundary at the soft
point M�, and not at the magnetic ordering vector M. Once
1 /S corrections are included, a gap is generated dynamically
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at M� for D=0, and there is a threshold anisotropy value Dc
above which the global minimum gap moves from M to the
soft point M�.

For parameters relevant to 2H-AgNiO2 �see Table I� the
gap to spin excitations is large throughout the BZ, with a
minimum at M� �Dc�0.21 meV for this parameter set�.
Quantum fluctuations lead only to small quantitative correc-
tions to the dispersion—compare the dashed to the solid line
in Fig. 10�b�—and fits to LSWT are therefore justified a
posteriori. A further indication that quantum fluctuations are
small is the fact that the zero-point reduction in the sublattice
magnetization

�mS =
2

N
	

p

Ap − �p

2�p
�B4�

is calculated to be small: �mS=0.038 for the parameters
given in Table I.

We note that this is not true in the limit of small aniso-
tropy D→0 and small NNN couplings J2 /J1→1 /8, in
which case the system is close to a quantum critical point. In
this case zero-point fluctuations are very strong and the cor-
rection to the sublattice magnetization diverges within
LSWT. A consequence of this is that 1 /S corrections drive
the gap


 � 4��J1S + J2S�D�S − 1/2 − �mS� �B5�

at the  point k= �0,0� imaginary for a small but finite re-

gion of parameters D /J1�0, J2 /J1�1 /8—cf. Fig. 13. Ac-
curate treatment of this small D regime would require a more
sophisticated self-consistent spin-wave theory, which is not
warranted for AgNiO2.

For the purposes of comparing the spin-wave calculations
at O�1 /S� with the envelope of scattering in ��Q� ,�� it is
sufficient to replace Ak, Bk, and �k by their corrected values
in the expression for the scattering intensity

Sxx�Q,�� = CS

2

Ak − Bk

�k
��� − �k� . �B6�

Finally, the interlayer coupling Jz� can easily be included
in these calculations by modifying Eq. �B1� as follows:

Ak → Ak + 2SJz��cos kz − 1� .

Here kz=Qzc where Qz is the c-axis wave vector component
in Å−1. At order O�1 /S� the interlayer couplings modify Eq.
�B3� to read

F�k,p� → F�k,p� +
Jz�

J1
�1 − cos 2kz��1 − cos 2pz� .

However since this change is relatively very small for sim-
plicity we neglect it in the analysis and only consider the
explicit effects of Jz� through changes in the dispersion rela-
tion at linear order in SWT. The resulting three-dimensional
spin-wave dispersion and corrections are shown in Fig.
10�d�.
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